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Computational approaches to the evaluation of the reactive scattering properties of atom–
diatom reactions are revisited. The aim is to exploit both the use of nonorthogonal coordi-
nates in reactive scattering and the restructuring of related computer codes for concurrent
computing. To this end, bond length, bond-order and hyperspherical bond order coordinate
formalisms are examined for the collinear case. At the same time, the evolution of parallel
models from coarse to fine granularity and the development of parallelization supports from
directive libraries to programming environments are discussed. The scalability of related
codes is tested by measuring the performances of restructured codes. The suitability of the
use of nonorthogonal coordinates for scattering purposes is tested by performing collinear
calculations for the H + H2 reaction.
Keywords: Hamiltonian; Quantum chemistry; Reactive scattering; Computational ap-
proaches; Nonorthogonal coordinates.

The evolution of the formulation of electronically adiabatic reactive scatter-
ing and the progress in modern computer technologies are transforming
the calculation of the detailed state-to-state quantum reactive probabilities
for atom–diatom systems into a routine task. The main difficulty is at pres-
ent associated with the high demand of computing resources when one has
to deal with large values either of the total angular momentum J or of the
atomic masses especially when the potential energy surface is structured
and strongly bent arrangements are energetically accessible. Much higher
difficulties are met when dealing with four- or more-atom reactive systems.
In these cases the computational machinery is not yet so established to al-
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low routine exact (converged with the total angular momentum) quantum
calculations in spite of the fact that, when dealing with larger systems, one
can adopt, in principle, an approach largely coincident with that developed
for three atoms.

The most popular computational approach to the evaluation of quantum
state-to-state probabilities of reactive systems is based on the definition of a
continuity variable along which the scattering equations are integrated step
by step from reactants to products (or from an intermediate situation to the
asymptotes). From a direct or indirect comparison of the system wave-
function of the reactants with that of the products, one can compute the el-
ements of the scattering S matrix from which all the scattering properties of
the system can be derived1. A sketch of the main features of the quantum
approaches to reactive scattering of atom–diatom systems is given.

Significant efforts are being made to progress towards accurate a priori cal-
culation of scattering properties of large systems. To this end, some reactive
scattering computational codes are being restructured to run in parallel2 on
innovative multiprocessor platforms. At the same time, however, alterna-
tive theoretical formulations of the problem easier to extend to four- and
more-atom systems are being developed.

In this paper both aspects are discussed to some extent. In particular, the
key features of quantum approaches to reactive scattering are revisited with
the purpose of singling out those aspects of the calculations relevant either
to the parallel restructuring or to an alternative formulation of the scatter-
ing equations. As to the computational aspects, the restructuring of the
codes to exploit concurrent execution is examined and the adoption of
some parallel models designed for multiprocessor computers is considered.
As to the theoretical aspects, we focus our attention on atom–diatom reac-
tions and, after illustrating the properties of some sets of nonorthogonal
coordinates, we examine an application to the study of the traditional pro-
totypical H + H2 collinear reaction.

COMPUTATIONAL APPROACHES TO QUANTUM REACTIVE SCATTERING

As already mentioned, the theoretical evaluation of all the observable prop-
erties of a scattering process can be reduced to the calculation of the scat-
tering S matrix. The S matrix elements can be determined by integrating
the time-dependent Schrödinger equation

$ ({ }, ) ({ }, )H x t
t

x tΨ Ψ= ih
∂
∂

, (1)
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where $H is the Hamiltonian of the system, Ψ({x},t) is its wavefunction
and {x} is any suitable set of coordinates. When using a time-dependent
approach to integrate Eq. (1), the time variable t is taken as a continuity
variable even when the Hamiltonian $H is time-independent. In time-
independent approaches, the time dependence is separated and, in order to
integrate the resulting stationary Schrödinger equation, a proper combina-
tion of spatial coordinates is taken as a continuity variable. In both time-
dependent and time-independent methods the computational procedure is
usually simplified by separating not only the motion of the center of mass
but also the rotation of the whole system (described in terms of the three
Euler angles α, β and γ) from the motion along the internal coordinates.
This allows an expansion of the global wavefunction Ψ in terms of its par-
tial wave contributions3, which are labeled after the eigenvalue J of the to-
tal angular momentum J of the system and after its projection on the
quantization axis of the chosen reference frame (M or Λ according to
whether reference is made to a laboratory-fixed or to a body-fixed frame,
respectively). Accordingly, calculated elements of the S matrix for atom–
diatom reactions (say A + BC → AB + C) relevant to this paper are labeled
after v and j (the vibrational and the rotational quantum numbers of the re-
actant diatom) and after J and its projection on the quantization axis.

The Quantum Time-Dependent Approach

In our implementation of the time-dependent approach derived from ref.4,
the integration of Eq. (1) is carried out by repeatedly applying the time
propagator exp(–i $Hτ/h) on the system partial wavefunction ΨJΛ(R,r,Θ,t)
(R, r and Θ are the reactant internal Jacobi coordinates, i.e., the modulus of
the mass-scaled atom–diatom center of mass vector (RA,BC), the modulus of
the mass-scaled diatom internuclear vector (rBC) and the angle formed by
them, respectively). The partial wavefunction is initially set as the function
of the reactants in a particular initial vibrational state v,j multiplied by a
factor specifying the range of energy available to the system along R. Then
the time propagator is repeatedly applied till the wavefunction (the wave-
packet) has spread over all the accessible configuration space including
products. At each time step, the cut of the wavefunction in the product re-
gion is expanded into the related vibrational eigenfunctions. The time de-
pendent coefficients of the expansion

C t r P rvj v j
J

r j v jΛ Λ Θ ΛΘ Θ Θ, ( ) sin ( ) ( )′ ′ ′ ′ ′ ′ ′ ′ ′= ′ ′ ′ ′∫ ∫d d φ Ψ ΘΛJ R R r′
∞′ = ′ ′ ′( , , , )τ (2)
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(where primed quantities refer to products, Pj′Λ′(Θ′) is the normalized associ-
ated Legendre polynomial of the product rotational state j′ and φv′j′(r′) is the
product vibrational function) are Fourier-transformed to get the time-
independent (energy-dependent) elements of the A matrix

A E t Et Cvj v j
J

t
vj v j
J

Λ Λ Λ Λ, ,( ) exp ( / ) (′ ′ ′
=

∞

′ ′ ′= ⋅∫
1

2 0π
d i h t) (3)

at the total energy E. One can then formulate the desired S matrix elements
in terms of the A matrix ones using the following relationship

S E
k k A
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k R
vj

v j)
exp ( )i , (4)

where g(–kvj) is the amplitude of the initial wavepacket with momentum
–hkvj and µ (µ′) is the reduced mass of the reactants (products).

The kernel of the computational procedure can be schematized as follows
in Fig. 1 (the loop over the angular variable is omitted for the sake of clarity).

The Quantum Time-Independent Approach

In our implementation of the time-independent approach derived from
ref.5 the hyperradius ρ (defined as ρ2 = R2 + r2 = R′2 + r′2) is taken, as usual,
as the continuity variable (reaction coordinate) for the integration of the

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

310 Laganà et al.:

LOOP over initial states
LOOP on time

LOOP on R
Apply the time step propagation

END the loop on R
LOOP on r

Apply the time step propagation
END the loop on r
Update the terms needed to evaluate the S matrix elements
Check for time integration termination

END the loop on time
Print out detailed S matrix elements

END the loop over initial states

FIG. 1
Scheme of the kernel of the time-dependent quantum code



scattering equations. The hyperradius, in fact, straightforwardly connects
the strong interaction region to both reactant and product asymptotes
(while for this connection Jacobi coordinates need a quite complex match-
ing procedure at some intermediate molecular geometry). The other two in-
ternal coordinates of a hyperspherical description of atom–diatom reactions
are the two hyperangles θ and χ. The integration of the time-independent,
version of Eq. (1) relies now on the partitioning of the reaction coordinate
ρ into NS sectors and on the expansion (within each sector i) of each n-th
partial wavefunction of parity p in terms of products of the Wigner rotation
functions $ (DM

Jp
Λ α,β,γ) of the three Euler angles, the surface functions

Φ Λt
Jp (θ,χ;ρi) of the two internal hyperangles, and of the unknown functions

ψ t
Jpn
Λ (ρ) of the hyperradius ρ.
The surface functions are calculated by solving the two-dimensional

bound state problem
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where GJ = J(J + 1)(A + B)/2, F = C – (A + B)/2, A–1 = µρi
2 (1 + sin θ), B–1 =

2µρi
2 sin2 θ, C–1 = µρi

2 (1 – sin θ), µ is the hyperspherical reduced mass (usu-
ally equal to (mAmBmC/(mA + mB + mC))1/2, V(ρi,θ,χτ) is the potential energy
and ε t

Jp
Λ (ρi) is the eigenvalue. In the same equation the hyperangular term
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The resulting set of coupled differential equations has the form
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In Eq. (6) the internal Hamiltonian $H i reads

$ $ $ $ ( , , )H T T T V
i

i h r c= + + + +15
8

2

2

h

µρ
ρ θ χ τ , (7)
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where subscripts “r” and “c” mean “rotational” and “Coriolis”, respectively.
$Tr and $Tc are formulated as:

$ ( , ) ( , ) ( , )T A J B J C Ji x i y i zr = + +ρ θ ρ θ ρ θ2 2 2

and

$ cos

sin
T J

i

yc

i= − h θ
µρ θ

∂
∂χ τ

2 2
.

As the propagation progresses from small to large ρ values, the system
leaves the region of strong coupling to reach the asymptotes where the
solution is conveniently mapped into final states by using the Jacobi coor-
dinates of the appropriate arrangement and by imposing the proper bound-
ary conditions to evaluate the S matrix elements.

The time-independent computational procedure (corresponding to the
time-dependent, one of Fig. 1) is articulated into two parts (each part can
be a different program). The first part calculates sector quantities at fixed
value of the reaction coordinate after solving the related (one dimensional
in the case of collinear systems) eigenvalue problems as schematized in Fig. 2.

The second part of the procedure propagates through the sectors the
fixed total angular momentum solution for a batch of NE energy values as
schematized in Fig. 3.

PARALLEL RESTRUCTURING

As already mentioned, part of our research is devoted to parallel restructur-
ing the reactive scattering codes in order to speed up their execution. To
this end, use was made of MPI 6 and different models of parallelism were
exploited to cope with the complexity of the related computational proce-
dures.

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

312 Laganà et al.:

LOOP on NS sectors
Generate fixed reaction coordinate cuts of the potential
Calculate the sector eigenvalues and eigenfunctions and store the eigenvalues
Calculate and store the intrasector coupling matrix
IF (not first sector) Calculate and store the intersector overlap integrals

END the sector loop

FIG. 2
Scheme of the kernel of the time-independent quantum code calculating sector quantities



The Coarse Grain Parallelization

Most of our work on parallel restructuring was carried out using models
based on coarse granularity. The simplest coarse grain parallel model dis-
tributes the whole program to all the available nodes NP and executes it in
parallel for different values of the parameters in a typical single program
multiple data (SPMD) fashion. Although this could appear to be the most
desirable situation, an SPMD approach shows severe limitations when the
matrices become too large to fit into the node memory. On the contrary, a
useful feature of the SPMD approach is the fact that it allows to make regu-
lar and minimal the message passing activity and to confine the I/O activ-
ity to/from disk.

The Time-Dependent Code

A more articulated way of parallelizing a quantum time dependent com-
puter program is to adopt a task farm model. In this model a master process
distributes to each worker node a fixed J calculation for a given initial vi-
brational state and a given interval of translational energy by dynamically
assigning the computational workload. As J increases, however, the demand
of computing resources also increases, not only in terms of the computing
time needed to perform each single J calculation (with an obvious effect on
the load imbalance) but also in terms of the size of the involved matrices.

For this reason the coarse grain parallel organization needs to be pushed
to a lower level. This can be achieved by decoupling a fixed J calculation
into several fixed Λ concurrent tasks. However, contrary to J, Λ is not con-
served and, therefore, the decoupling of fixed Λ calculations has to be en-
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LOOP on NS sectors
Read intra and intersector quantities

END the sector loop
LOOP on NE energies

Embed the energy dependence into the coupling matrix
LOOP on NS sectors

Propagate the wavefunction through the sectors
END the sector loop
Calculate and store detailed S matrix elements

END the energy loop

FIG. 3
Scheme of the kernel of the time-independent quantum code propagating the wavefunction
and calculating the S matrix



forced through dynamic approximations like the centrifugal sudden one7.
As a result of such a decoupling, one can perform a step-propagation of the
wavepacket for all the blocks of fixed Λ values belonging to the same value
of J and then combine together the various (fixed Λ) contributions. This
step decomposition of the wavepacket domain allows to cope with the de-
mand of larger memory associated with the increase in J since it leads to an
almost constant, per node demand of memory at the expense of an increase
in the number of processors used.

Such a parallel model was first tested8 on the Cray T3E of EPCC (Edin-
burgh, U.K.) using three nodes for the simplest case of J = 0 and J = 1. The
measured speedup was 2.6. This indicates that the proposed model is quite
effective in reducing computing times despite the fact that, when the size
of the problem is increased, I/O may become a true bottleneck. This is due
to the fact that all the I/O traffic is channeled through node 0 that acts as a
master. The efficiency of the model is also penalized by the fact that when J
gets larger, the work statically assigned to the workers becomes increasingly
unbalanced. To gain significant improvement, when generalizing this
model to larger J values, fixed J calculations are carried out in pairs (for all
the related J + 1 fixed Λ components) by balancing dynamically the work-
load. In this model the I/O traffic is still channeled through the master. Yet,
in this case this does not constitute a real bottleneck since node 0, contrary
to what was happening with the previous model, does not carry out any
calculations.

A fundamental limit of this model is the fact that its minimum computa-
tional grain consists of single-J–fixed-Λ computational blocks. This implies
that the maximum value of the total angular momentum quantum number
that can be handled by the model has to be 3 units smaller than the num-
ber of available processors. Furthermore, to keep all the processors busy all
the time one has to run simultaneously a pair of complementary (summing
up to the maximum allowed value of J) fixed J calculations.

To evaluate the performances of the improved model, the calculations
were carried out on the Origin 3800 of Cineca (Bologna, Italy) in local
memory mode using MPI. The measured times indicate that, though the
growth of communication time associated with an increase in the number
of allowed Λ values slightly penalizes the efficiency of the code, the model
is quite effective in reducing the overall computing time9.
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The Time-Independent Code

More complex is the coarse-grain parallel restructuring of the time-
independent code for which an SPMD distribution of fixed J calculations is
inadequate. In this respect, typical is the articulation of the first part of the
calculation (in three dimensions this is a program in itself (named ABM in
our procedure) that performs the calculation of fixed ρ eigenvalues, surface
functions, overlap and coupling matrices). For ABM a dynamic task farm
model distributing the NS sector calculations on the NP available nodes is
adopted. According to this parallel organization, the calculation of each
block of sector surface functions is assigned to the first available node by a
dynamic allocation of the workload controlled by the master process (see
Fig. 4). The worker node calculates the sector surface functions, evaluates
the matrix of the overlap integrals between these functions and those of
the previous sector at the common border and constructs the coupling ma-
trix. In this case, shared memory would allow an access to data of different
sectors in the proper sequence. Using the message passing paradigm of MPI,
this can be obtained either by transferring the data from the node that has
made the calculations to the node needing the information (this requires
the setting of a few barriers to channel the data in the appropriate se-
quence) or by replicating the calculation of the surface functions of the pre-
vious sector when needed (this is carried out by utilizing the related
eigenvectors without solving again the eigenvalue problem). The replica-
tion of the calculation of the surface functions of the previous sector (see
Fig. 5) together with a dynamic distribution of the work, greatly reduces the
communication time and minimizes the work imbalance.

The calculated coupling matrix is stored on disk, together with the over-
lap matrix, for use by the subsequent LOGDER program that carries out the
propagation of the solution. (Again, in three dimensions, this part of the
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MASTER PROCESS

Read input data
Send input data to the workers
LOOP on sector index

Calculate the value of ρ at the sector midpoint
Call MPI_SEND(ρ)

END LOOP on sector index

FIG. 4
Pseudo MPI code for the master process in ABM



calculation is a program in itself.) This parallel model has been imple-
mented for J = 0 on the CRAY T3E of EPCC (Edinburgh, U.K.) using up to
128 processors. The individual processor computing time never exceeds
10% of the average one and the speedup is never smaller than 70% of the
ideal value2.

For the energy loop of LOGDER (see Fig. 3) a similar task farm structure
looping on energy was adopted. However, the excellent performance ob-
tained for the J = 0 runs was not equalled by the higher J calculations. This
is due to the fact that, when using MPI, to deal with matrices having a size
too large to be accommodated inside the local node memory communica-
tion overheads becomes important. As already mentioned, the only reason-
able solution to this drawback is the reduction of the dimensionality of the
problem by introducing dynamic approximations (like those associated
with the freezing of the projections of the total angular momentum or of
the collision angle). As an alternative, an efficient solution is the emulation
of the shared memory environment using an abstract level coordination
language.

For the fixed-angle calculations, the two parts of the computation be-
come, respectively, sections (a) and (b) of the same program. In the case of
Section a, a task farm model with a static data decomposition can be used.
This means that sectors are grouped in blocks of approximately the same
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WORKER PROCESS

Receive input data
10 Call MPI_RECV(ρ)

LOOP on Λ
Construct the primitive basis set at the given value of ρ
Solve the angular Schrödinger equation by expanding in the primitives
Store on disk eigenvalues and eigenvectors
IF(not first sector) then

Construct the basis set at the previous value of ρ
Read from disk related eigenvectors
Compute overlap integrals at the common edge of the two sectors

END IF
END LOOP on Λ
Calculate the coupling matrix
Store on disk the coupling matrix for use from LOGDER
GOTO 10

FIG. 5
Pseudo MPI code for the worker processes of ABM



size and each block is assigned to a different worker processor for execu-
tion. The number of generated sector blocks, obviously, depends on NP, the
number of nodes available on the machine used. At the end of Section a
quantities calculated on each node are broadcast to all other nodes to as-
semble the whole coupling matrix. In the case of Section b, a task farm
model is also adopted. However, the distributed task (the propagation sec-
tion) is now assigned dynamically for different values of the total energy2.

New Prospects in Concurrent Computing

As already mentioned, coarse-grain parallel models find a limitation in the
maximum size of the matrices that can be dealt. The only way of making
the program really scalable with an increase in the size of the involved ma-
trices is to go beyond outer levels of parallelization and dig deep into the
code fine structure. This implies two orders of difficulties. The first type of
difficulty is that one needs to know intimately the code and the theory laid
behind it. This requires a specific expertise and the ability of mastering the
details of the code during its evolution to maturity (that is difficult to sus-
tain as more and more contributions from different laboratories add up).
The second type of difficulty is related to the availability of suitable tools to
optimize the parallel structure of the program and its portability on differ-
ent platforms without losing efficiency. This is particularly true for those
codes for which the efficiency of the parallel organization is strongly data-
dependent.

Fine-Grain Parallelization

To investigate the possibility of pushing the parallelization to a very fine
grid we concentrated on the time-dependent code. The critical step of the
calculation is the application of the time propagator that for each dimen-
sion iterates the computation of the following expression

D = A ∗ C + C ∗ BT + V � C, (8)

where D is the matrix storing the wavepacket modified by the action of the
Hamiltonian and V � C is the direct product of the potential matrix and
the wavepacket.

In a sequential approach, all the matrices need to be stored in their en-
tirety in the central memory during the propagation of the wavepacket.
However, the matrices that are modified during the execution are D and C.
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Therefore, in the task farm model adopted for this part of the code, the
master can broadcast to the workers the matrices A and V during the first
time step. Yet, the C matrix (representing the wavepacket in the previous
time step) has to be sent to the workers at every iteration. This can be done
by partitioning the matrix C in a way that optimizes the load for the
worker nodes. The workers perform the operation A ∗ C + V o C on the re-
ceived partition of C while the master carries out the calculation of C ∗ BT

by multiplying the rows of C times the rows of B (that are the columns of B
transposed). At the end of the calculations, the master collects the results
from the workers and assembles the matrix D.

However, since the matrices A, B and V remain unaltered, the task farm
model can be improved if the matrix domain is partitioned by rows and a
memory management more respectful of the data hierarchies (including
I/O) is used. In this case when the matrices are symmetric one can write the
following algorithm

Row(i, H) =

A i k
k

( , )∑ ∗ Row(k, C) + Row(i, C) ∗ BT + Row(i, V) ∗ Row(i, C) , (9)

in which the first term of the expression on the right-hand side of the
equation (the calculation of the i-th row of the product matrix A ∗ C) is
computed by multiplying the elements of the i-th row of A times all the
rows of C. The product in the second term of the expression is computed in
the same way by avoiding the transposition of matrix B. The third term of
the expression is computed by taking the scalar product of the correspond-
ing rows of the two matrices. In this way, the algorithm becomes highly ef-
ficient even for matrices whose size exceeds that of the local memory. In
the related model, in fact, memory requests are dramatically reduced
thanks to the domain partitioning and computing times are drastically
shortened thanks to the concurrency between master and worker opera-
tions. Moreover, communications are largely decreased both in the startup
and in the propagation iteration phase. As a matter of fact, the final assem-
blage of the D matrix is performed through a reduce operation on the data
of the processes: the master process builds up the Row(i, V) ∗ Row(i, C)
product while the worker processes prepare the necessary vectors. Then D is
stored in the logical space of the master10.

Benchmarks have been performed on a Linux SST cluster implemented as
a hybrid Mosix–Beowulf architecture in which the various features of the
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two architectures coexist. The Beowulf approach guarantees the compatibil-
ity with applications based on the usual PVM and MPI parallelization librar-
ies. The Mosix approach guarantees an optimal exploitation of the
computing resources thanks to its advanced clustering features like the au-
tomatic migration of the processes and the real time balance of the load. In
this way the Beowulf architecture profits from the Mosix one. The cluster is
made of 9 machines (whose characteristics are given in Table I) of which
one is used as front end.

A networking scheme of the enclosed type has been chosen. In this
scheme the front end acts as a gateway to the outer network. Node commu-
nication is supported by Intel e1000 boards adopting the Gigabit Ethernet
standard on a UTP cabling. The interconnection has been obtained using a
3Com Gigabit Switch. The operating system adopted is RedHat Linux 7.2
including the updates of the kernel to the last version supported by Mosix.

Speedups measured for matrix dimensions of 600 by varying the number
of nodes used are given in Table II.
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TABLE I
Hardware configuration of the clustered nodes

Front end Clustered nodes

Case rack-mount 1U with 2 movable HD
slits

rack-mount 1U with 2 movable HD
slits

Mother
board

dual processor with server Works
Chipset

dual processor with VIA Chipset

CPU 2 Pentium III, Coppermine 1 GHz 2 Pentium III, Coppermine 1 GHz

RAM 2048 MB 2048 MB

Controller PCI SCSI Adapter 7892P integrated
EIDE server Works Controller

integrated EIDE VIA controller

Discs 2 U-SCSI 19.2 GB Discs 1 IDE 40 GB Disc

Network NIC Intel e1000 PCI Copper Gigabit
Ethernet 2 NIC Intel 2100 pro fast
Ethernet integrate

NIC Intel e1000 PCI Copper Gigabit
Ethernet 2 NIC Intel 2100 pro fast
Ethernet integrate

TABLE II
Measured speedups

NP 1 3 5 7

Speedup 1.00 2.46 4.57 6.40



A Coordination Language for Parallel and Grid Computing

The need for pushing the portability of the codes when distributing the cal-
culations becomes dramatic when exploiting the potentialities of a grid. In
this case the availability of user-friendly abstract parallelization tools is vi-
tal. This subject has been given specific attention by European Community
Initiative COST in chemistry that has launched the action D23
(METACHEM: Metalaboratories for Complex Cornputational Applications
in Chemistry) whose objective is to promote the institution of Chemical
Metalaboratories (groups of chemical laboratories grafted on a computer
grid)11.

A specific effort in this direction is the development of programming en-
vironments and of the related coordination languages+.

We are actively working on the testing of a programming environment
based upon the definition of some structural templates (SkIE) being devel-
oped by the group of Prof. Vanneschi12 in Pisa. The building blocks of SkIE
(skeletons), usually employed to construct parallel applications, refer either
to stream (the flow sequence of the information) or to data (the allocation
of the information) models. Typical stream-parallel structures are the farms,
the pipelines and the loops. The farm consists of a replication of a function
into a number of identical and independent workers, to which the stream
elements are scheduled according to a load balance strategy. The pipeline
consists of a parallel implementation of a set of functions into cascade
stages through which the elements flow. The loop consists of a data-driven
iterative computation through which the stream elements and their trans-
formations flow until a certain condition is satisfied. Typical data-parallel
structures are the map, the reduce and the compose. The map consists of
a replication of a function into a number of identical and independent
workers to which the elements of the data structure are distributed. The
reduce consists of a parallel reduction of a data structure by binary associa-
tive and commutative operations. The compose consists of a sequential set
of functions expressing a parallel computation-replication and partitioning
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+ A programming environment is a software development system that enables the
programmer to efficiently irnplement parallel applications by making use of parallel
structures defined at an abstract level without resorting to the use of classic parallel libraries
such as MPI. The coordination language of a given programming environment is a set of
instructions and directives understandable by the compiler which allow the imple-
mentation of the application in that particular environment.



of data with communications designed according to a predetermined sten-
cil13. In both stream-parallel and data-parallel paradigms, some data can be
replicated.

SkIE has recently evolved into a more flexible tool (called ASSIST 14) in
which a new highly flexible parallel structure, the parmod module, has been
introduced. This allows the programmers to freely organize the structure of
the module and the sharing of the objects.

The key advantage of ASSIST is the fact that it combines the structured
parallel programming philosophy with an object oriented nature. In fact,
the compiler of ASSIST is based upon a library of extremely powerful classes
and methods. As an example, to distribute the matrices of the time- de-
pendent code in blocks of columns and rows the parametric class Collective
< IMP > of the ASSIST library was used to properly manage communica-
tions. In this way it has been possible to implement broadcast and scatter
classes to send information to the nodes. At the same time, on the way
back, it has been possible to collect the results produced by the nodes by
using a reduce operation implemented via a gathering function. I/O opera-
tions on a communication channel were, in turn, implemented using the
put and get methods of the used collectives of communication15.

NONORTHOGONAL COORDINATES

Theoretically, it is well known that, after separating the motion of the
center of mass, the Hamiltonian of the atom–diatom problem is six-
dimensional and needs a pair of vectors to describe the collision process of
three nuclei. These vectors are most often taken to be the already defined
mass-scaled Jacobi vectors Rτ and rτ, where τ labels the ordering choice
made for the A, B and C masses. A clear advantage of this choice is that the
Hamiltonian

( ) ( )$ / , ,H V R r= − ∇ + ∇ +h 2 2µ
τ τ τ τ τR

2
r
2 Θ (10)

is expressed in a diagonal and symmetric form. In general, in a full dimen-
sional treatment, the solution is formulated as a function of the three Euler
angles associated with the rotation of the rigid triatomic system and of the
three internal coordinates R, r (the moduli of RA,BC and rBC, respectively)
and the angle Θ formed by them.
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From Arrangement to Process Coordinates

By considering for simplicity the collinear case in Jacobi coordinates, the
Hamiltonian reads

$ ( , )H
R r

V R r= − +






 +h 2 2

2

2

22µ
∂
∂

∂
∂

(11)

with V(R,r) being the collinear cut of the atom–diatom potential.
As already mentioned, Jacobi coordinates are arrangement coordinates.

This means that they are suitable to support an expansion of the global
wavefunction in the basis set of the related arrangement. Therefore, when
using Jacobi coordinates, one can properly deal with inelastic problems
since, in this case, there is no change of arrangement. Yet, when dealing
with reactive processes, as already mentioned, the change of the nature of
the system requires a switch from reactant (R, r) to product (R′, r′) coordi-
nates (as usual, product-related quantities are primed). To this end, one
usually defines in the strong interaction region a set of circular coordinates
centered on a classically inaccessible point of the ridge separating reactants
from products whose radius coincides with r in the entrance channel and r′
in the exit channel. However, as already mentioned, in three or more di-
mensions, significant difficulties are met when carrying out the matching
between product and reactant representations using Jacobi coordinates
(especially for asymmetric systems).

The Bond Length Coordinates

The matching procedure can be avoided by using orthogonal coordinates
smoothly evolving from the reactant to the product arrangement. This is
the case of the hyperspherical coordinates, for which the hyperradius can
be taken as a continuity variable all the way through from collapsed ar-
rangements to both reactant and product asymptotes. However, as ρ in-
creases, hyperspherical coordinates (that still need to be switched into the
proper Jacobi coordinates every time a mapping to asymptotic arrange-
ments is needed) compress all the bound degrees of freedom within in-
creasingly smaller portions of the angular variables. This leads to some
computational difficulties that can be overcome using tangent hyper-
spherical coordinates16.

Another viable alternative to the use of orthogonal Jacobi coordinates
is the use of nonorthogonal bond length coordinates. In the collinear A +
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BC → AB + C process, the bond length coordinates to be considered are rBC
and rAB (associated with the two vectors rBC and rAB connecting the ex-
changed atom B to A and C, respectively). An advantage of using the rBC
and rAB bond lengths as coordinates for dynamic purposes lies in the fact
that they are also used to formulate the potential (no additional calculation
is needed for their evaluation) and that both reactant and product diatom
are equally well represented. In these coordinates, the related Hamiltonian
reads

( )$ ,H C
r

C
r

C
r r

V r rrrx rry rxy= + + +∂
∂

∂
∂

∂
∂ ∂

2

2

2

2

2

BC AB BC AB

BC AB , (12)

where Crrx = −h 2 /2µBC, Crry = −h 2 /2µAB, Crxy = h 2 /mB with mB being the mass
of the B atom and µBC and µAB being the reduced masses of the BC and AB
diatoms, respectively.

Bond length coordinates have already been used in the literature to calcu-
late static and dynamic properties of three-atom systems (see, for example,
refs17–19). However, as is apparent from Eq. (12) and from the work just
mentioned, the price to pay is a formulation of the Hamiltonian that is
more complicated than that for Jacobi coordinates and a (trivial in the col-
linear case) conversion to Jacobi coordinates at the asymptotes to perform
the related analysis.

The Collinear H + H2 Reactive Probabilities

To test the computational machinery of reactive scattering programs based
on the use of nonorthogonal coordinates we have performed an exact
time-dependent calculation of the collinear reactive probabilities of the H +
H2 system (universally accepted as the archetype of chemical reactions) us-
ing bond length coordinates. A more general discussion on the use of these
coordinates for reactive scattering studies of larger systems will be given
elsewhere20. The code is also built to take advantage of the fine grain paral-
lelization algorithms discussed in the previous section allowing the
achievement of high speedups when the matrices handled in the calcula-
tion become very large due to the high number of degrees of freedom of the
system.

As usual, the H mass was taken to be 1.00783 a.m.u. The calculations
were performed for the ground vibrational state of the reactants using a
grid of 64 × 64 points. The potential energy surface used for the calcula-
tions was that of ref.21 The initial wavepacket was given an energy of
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0.7 eV. Calculated reactive probabilities are plotted in Fig. 6 as a function of
the total energy of the system (given in eV) for increasing product vibra-
tional states starting from the ground one (from top panel down). The plots
show the usual structure of the H + H2 reactive probabilities that has been
reported in the literature since the early days of quantum reactive scatter-
ing calculations22.

New Prospects: Bond-Order Type Coordinates

Other types of nonorthogonal coordinates are relevant to the development
of alternative approaches to reactive scattering. Of particular interest are
the coordinates derived from the bond-order (BO) concept which was sug-
gested long time ago by Pauling23 in an heuristic fashion. The BO concept
has since then revisited in the literature for several purposes including reac-
tive scattering calculations24.
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FIG. 6
Collinear reactive probabilities for H + H2
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The Bond-Order Coordinates

A few years ago we started using BO coordinates in a systematic way to fit
potential energy surfaces of few-atom systems. This originated from the
idea that a BO space would be more natural to map the different contribu-
tions to the interaction of the various regions of internuclear distances and
that the strength of a chemical bond can be associated with the exponen-
tial of its displacement of the internuclear distance from equilibrium. Ac-
cordingly, BO coordinates for the A + BC → AB + C collinear reaction were
defined as

( )[ ]n r rBC BC BC BC= − −exp β 0

( )[ ]n r rAB AB AB AB= − −exp β 0 , (13)

where βi and ri
0 are empirical parameters. To relate the BO variables to ob-

servable quantities (after all, this was the aim for which they were proposed
in the first instance23), a link to diatomic vibrational spectroscopic proper-
ties was made25. This was obtained by modeling the atom–atom interaction
as a second-order polynomial in the related BO coordinate. Then by setting
βi and ri

0 as the force constant of diatom i and its equilibrium distance, re-
spectively, one obtains the corresponding Morse potential and vibrational
eigenvalues. Higher-order polynomials, whose parameters were optimized
not only to spectroscopic constants but also to multipole expansions of the
long-range interaction, gave an accurate reproduction of both spectroscopic
and dispersion properties25.

BO polynomials were also successfully used to represent the interaction
of triatomic systems. This is based on a many body expansion of the inter-
action26. Then the two-body terms are formulated as fourth-order polyno-
mials in the related BO coordinate while the three-body term is given as a
cross product of powers of different BO variables up to the sixth order27.

Like their parent bond length coordinates, BO coordinates are nonortho-
gonal and properly describe the evolution of an atom–diatom reactive sys-
tem from the initial to the final arrangement with no need for carrying out
a complex matching operation (from this the name of process coordinates).
Further properties of the BO coordinates are the fact that the space is in-
verted (the zero of the BO coordinate corresponds to an infinite bond
length while large BO values correspond to short bond lengths) and con-
fined into a finite volume.
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These properties are of some advantage in scattering calculations. As a
matter of fact, the BO collinear Hamiltonian has the simple formulation:

$H C n
n

n
n

C n
n

nnx nny= +








 + +BC

BC
BC

BC

AB

AB

2
2

2

2
2

2

∂
∂

∂
∂

∂
∂

n
nAB

AB

∂
∂









 +

( )C n n
n n

V n nnxy AB BC
BC AB

BC AB

∂
∂ ∂

2

+ , (14)

with the coefficients being Cnnx = –(hβ)2/2µBC, Cnny = –(hβ)2/2µAB and Cnxy =
(hβ)2/mB when the breaking and forming diatoms have the same force con-
stant β. The BO formulation of the Hamiltonian is currently being used for
quantum time-dependent20 and classical trajectory28 calculations. It is also
being tested for variational (both one-dimensional29 and multidimensio-
nal30 reactive calculations.

The Hyperspherical Bond-Order Coordinates

The BO space can also be given a polar representation by adopting the hy-
perspherical BO (HYBO) coordinates. For collinear systems the two HYBO
coordinates are

ρ = +n nAB BC
2 2

α = arctan /n nBC AB . (15)

An extension to more dimensions is obtained by adding more angles.
An interesting property of the HYBO space is that all the coordinates, in-

cluding ρ, have a finite range of excursion (full fragmentation corresponds
to the zero of the BO space and the collapsed system is confined inside the
various exp [2βi ri

0 ] limiting values). Another interesting property of HYBO
space is that fixed collision angle isoenergetic contours of the interaction
show an almost spherical symmetry (particularly for collinear cuts of the
atom–diatom potential)31,32. This has suggested the possibility of construct-
ing a functional form for representing the potential energy surface of atom–
diatom systems as a proper combination of rotating bond-order (ROBO)
functionals. The ROBO functional, in fact, is based on the assumption that

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

326 Laganà et al.:



the reaction channel can be modeled as a bond-order diatomic-like poten-
tial in ρ whose parameters vary with a that now plays the role of reaction
coordinate31,32. The generalized form of the ROBO potential (LAGROBO)
has been successfully used to fit the potential energy surface of several
three-atom systems and has also been extended to four-atom systems33.

As to their use in dynamic calculations, it is worth reemphasizing here
that HYBO coordinates are nonorthogonal hyperspherical coordinates.
Nonetheless, for each of them, it can still be identified a dominant role.
Such a role, however, is different from that of the usual orthogonal hyper-
spherical coordinates. As a matter of fact, the hyperradius ρ does not play
the role of reaction coordinate. As already mentioned, this role is played,
instead, by the angle α that gradually connects reactants to products. The
coordinate ρ describes, instead, a collective bound motion that evolves
from the oscillation of the reactant diatom to the oscillation of the product
diatom. For this reason a basis set in ρ has been used to expand the bound
states of the reaction channel at fixed values of α 29.

In the HYBO coordinate formalism the collinear Hamiltonian reads

$ ( ) ( ) ( , )

( , )

H C C C

C

= + + +αα α ρα

ρρ

α ∂
∂α

α ∂
∂α

ρ α ∂
∂ρ

∂
∂α

ρ α ∂
∂

2

2

2

ρ
ρ α ∂

∂ρ
α ρ

2 ρ+ +C V( , ) ( , ) , (16)

where, for the A = C case (for clarity in this symmetric case we label the C
coefficients using the superscript s)

C
mαα α β α
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D
2

D B
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with βD = βBC = βAB and µD = µBC = µAB.

CONCLUSIONS

Some streams of progress in investigating atom–diatom reactions carried
out in our group are outlined in this paper. The first line of research is con-
cerned with the design of computational algorithms suited to run concur-
rently on parallel platforms and with the development of a coordination
language offering suitable support to the related restructuring work. The pa-
per shows some examples of speedups achieved in this way.

The second line of research is concerned with the development of alter-
native reactive scattering formalisms with respect to the more popular or-
thogonal coordinate ones. The search for such a formalism has driven us to
the use of bond-related coordinates and to the exploitation of some of their
characteristics relevant to the description of reactive processes. In this case
too, some test runs were performed to show some examples of prototype
calculations. To this end quantum reactive probabilities of the H + H2 col-
linear system were computed.

Most of the work reported here is still in progress and we are delighted to
have the opportunity of illustrating it in the present issue of the Collection
in honour of the commitment to research of Prof. P. Čársky, Prof. I. Hubač
and Prof. M. Urban.
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